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Dispersion and Attenuation Characteristics of
Coplanar Waveguides with Finite Metallization
Thickness and Conductivity

Jeng-Yi Ke and Chun Hsiung Chen

Abstract—A new approach of modifying the conventional spec-
tral-domain approach is proposed for an analysis of the coplanar
waveguide whose signal strip and ground planes have finite
thickness and conductivity. By introducing suitable equivalent
sources in the slot and signal strip regions, the problem can be
significantly simplified by reducing the two-dimensional numeri-
cal integration into the one-dimensional one, thus it can be treated
as easily as the conventional spectral-domain approach. By this
modified approach, both the phase constant and attenuation
constant can be determined simultaneously without using the
assumption that the metallization thickness is much larger or
smaller than the skin depth. In this work, comparison with
published theoretical and experimental results is presented to
check the accuracy of the new approach’s results. In particular,
the effective dielectric constant ¢. ¢ ; and attenuation constant o of
a coplanar waveguide with finite metallization thickness and finite
conductivity are discussed in detail, together with the current
distributions along the signal strip and ground planes.

1. INTRODUCTION

HE COPLANAR waveguide structure has become an

intensive topic of current research due to some of its
attractive characteristics with respect to those of the microstrip
line. One advantage is the easy connection of both series
and shunt components without drilling holes through the
dielectric substrate. The substrate need not be made very
thin in millimeter-wave region, offering more parameters
for characteristics adjustment. It is also less dispersive than
the microstrip line, making the quasi-static design formulas
applicable to the higher frequency regime.

Previous analysis of coplanar waveguides was usually con-
ducted under the assumptions of infinitely thin conductors and
infinite conductivity. Recently, the problem of finite metalliza-
tion thickness and finite conductivity has received increased
attention, because the conductor thickness may be comparable
to the skin depth in monolithic microwave integrated circuits
(MMIC’s). With the metallization thickness in the order of skin
depth, the propagation characteristics, especially the attenua-
tion constant, would behave different from the previous ones
of assuming zero metallization thickness or assuming infinite
conductivity but with finite metallization thickness [1]. Thus, a
more reliable and accurate model to determine the propagation
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constant is needed in the design of monolithic microwave and
millimeter-wave integrated circuits [2].

The characterization of attenuation by the conventional
power-loss method [3] or Wheeler’s incremental inductance
rule [4] becomes inadequate in a design of MMIC’s be-
cause it was based on the skin-depth approximation that the
metallization thickness is much larger than the skin depth.
Recently, some full-wave approaches such as the transverse
resonance technique [5] and the extended spectral domain
approach [6]-{7] were proposed to deal with the problem of
finite metallization thickness and finite conductivity. In these
approaches, the conductivity was first regarded as infinity to
get the effective dielectric constant and the fields, and then
used these unperturbed fields and the power-loss method to
determine the loss caused by the imperfect conductors. Other
full-wave techniques without using the skin-depth approxima-
tion, such as mode matching method [8], [9] and method of
lines [10], were also proposed to give a better characterization
of both effective dielectric constant and attenuation constant.
However, these techniques can only handle the bounded struc-
tures. Therefore, an effective method with less assumptions to
get the propagation constant is needed to meet the development
of mm-wave technology.

For an analysis of the coplanar waveguide with layer
structure in which the thickness and conductivity of conductors
are finite, a new formulation of modifying the conventional
spectral-domain approach is proposed to handle the case with
two-dimensional dependence in field distributions. In this
formulation, the only unknown is the electric field confined to
the slot and signal strip regions. To improve the accuracy in
computation all three components of electric field are included,
and the effects of lossy signal strip and ground planes are
discussed. And by this modification, the integration along one
coordinate variable is analytically integrated. Hence it is as
easy as the conventional spectral-domain approach in which
only one-dimensional integration has to be performed to get
the matrix equation for the propagation constant. To reduce
the CPU time, an alternative representation of the unknown
field by some already calculated better field distributions is
also proposed [11] when the metallization thickness is much
larger than the skip depth.

II. FORMULATION

The cross-section of the coplanar waveguide is shown in
Fig. 1(a). Here, ¢ is the thickness of the signal strip and the
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Fig. 1. (a) Cross-section of coplanar waveguide, (b) equivalence problem in
formulation, and (c) layer structure for deriving Green’s functions.

ground planes, o, is the conductivity of signal strip, and oy
is the conductivity of the ground planes. The width of the
signal strip is 2a, the distance between the ground planes is
2b; and the thickness, dielectric constant, and loss tangent

of the substrate are h,¢,., and tan é, respectively. To solve .

this problem, the equivalent structure shown in Fig. 1(b) is
investigated. In this equivalent problem, the signal strip and
the slots are replaced by the conductor of conductivity o3, and
the equivalent currents J; = (y1 — v )E and Jo = (y2 — ) E
are introduced in the signal strip region €2, and slot region
Q9, respectively, where y; = jweg + 01,y2 = jweg, and
y» = jweg + op. The relation between the electric field E(r)
and the equivalent current densities J;(r) within the signal
strip and slot regions is

2 : =
E(r) = z (ys — us) /Q G@r—-7)-B@)d'. @

Here, G is the dyadic Green’s function for the layer
structure as shown in Fig. 1(c). It should be emphasized that
the conductors are now regarded as a lossy layer therefore the
effect of lossy signal strip and ground planes may be discussed
through these Green’s functions. Some detail of the Green
functions is presented in the Appendix.

For the important special case of o1 = o0} in which both
signal strip and ground planes have same conductivities, the
equivalent current Jq in the strip region €, is zero, thus the
integral equation (1) need only be solved in the slot region (5.
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Fig. 2. Comparison of effective dielectric constant €.¢y and attenuation
constant o with those of mode matching technique.

All field quantities are assumed to be of the form exp [7(wt—
k.z)], and the Fourier transformation pair is defined as

Aky) :/ Alz)e = gy
Az) = 51%- / ~ Alky)e'*=® dk,. )

By weighting both sides of (1) by any arbitrary function w(r)
and then integrated, one may get the integral equation

/_bb/;wu,y)‘{g@i—yb)/_bb A

G(z,y,7, 9, k.) - E(z',y) dy' da’

- E(z, y)} dydz = 0. G))

It is interesting to note that the y-dependence form of the
spectral-domain Green functions is a linear combination of
exp (75py) and exp (jBpy’), where 3, is independent of y
or 4 (see Appendix). Thus, if the bases of E(z,y) are
properly chosen, the integral equation (3) can be significantly
simplified.

With the parameters (4,07, 03) of signal strip and ground
planes absorbed in the Green’s functions, the only unknowns
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Fig. 3. Effective dielectric constant €7y and attenuation constant o versus
frequency with aperture width b as parameters.

are the electric field distributions within the slot and signal
strip regions which can be represented by

Ep(x,y) = ZZ aZ P (@)ei(y), p=z,y,2 @)

i=0 j=0

where 1/;;,(30) is the Legendre polynomial and (/)é(y) is the
piecewise linear function. Here (m+ 1) z-dependent and (n+
1) y-dependent bases are included in the approximation of
the unknown fields in the slot and strip regions. It should
be pointed out that to get a more accurate result for the
propagation constant, all three components of electric field
should be included in the analysis. By applying the Fourier
transformation and Parseval’s theorem with respect to 2 vari-
able to (3), then analytically integrating it with respect to y
variable, one may finally yield the governing equations in the
spectral domain. Note that only single integration with respect
to k, is involved in the final spectral-domain equations, since
the y-dependent integrations have been analytically integrated.
Thus, it can use the conventional technique of spectral-domain
approach to find the phase and attenuation constants.

Because the thickness ¢ and conductivities (o1, o3) are finite,
the field distributions within the slot and strip regions must be
finite. In this study, the Legendre polynomials are chosen as
the z-dependent bases for the unknown field distributions E,
that is,
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Fig. 4. Typical field distributions in slot region.
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Fig. 5. Convergence of method 2 with reference to method 1.

For simplicity, the following piecewise linear functions will
be chosen as the y-dependent bases for the unknown field E

P (y) = ¢4 (y) = ¢, (y) = Av)

- A
y—A—l—l, Al <y< 4
=< Ay — 6
—ii—y, Al<y<Al+1’ ©
0, otherwise

where A; = [A and A = ¢/n. The piecewise linear functions
are chosen for the purpose that the y-dependent integrations
may be analytically integrated.

To derive the matrix equation for the propagation constant,
the Galerkin’s method is used, in which the bases for w(z,y)
are the same as those for E(z,y). Then the propagation con-
stant-k, = 3 — jo can be found by solving the homogeneous
matrix equation.

III. NUMERICAL RESULTS

Numerical results such as effective dielectric constant
cerr = B2k (k3 = w’poeo), attenuation constant a, and
longitudinal current distributions J, over signal strip and
ground planes are investigated in detail.

To illustrate the convergence behavior with respect to the
expansion in (4), a typical example with ¢ = 0.25um, b =
15 pm, a/b = 013, 01 = 0p = 3 X 107 S/m, €, = 12.6,
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Fig. 6. Effective dielectric constant € sy and atienuation constant a versus
frequency with metallization thickness ¢ as parameters.

and tan § = O is considered. At 10 GHz, all three field
components need 5 Legendre polynomials, and 4 piecewise
linear functions to get convergent results for €.y and o with
error less than 1%. As frequency increases to 60 GHz, 8
Legendre polynomials and 6 piecewise linear functions are
required to get the same accuracy.

To check the accuracy of the new approach’s results, a
comparison of our results with those of the mode-matching
technique [8] is presented in Fig. 2. Agreement in both effec-
tive dielectric constants €. 7 and attenuation constants « of a
bounded coplanar waveguide is observed.

Shown in Fig. 3 is the effect of increasing aperture width
b. Also included in this figure are the experimental results
of [12]. Good agreement among these results is observed.
Note that both the effective dielectric constant and attenuation
constant decrease as the aperture width increases. Especially,
as frequency grows, the difference in the effective dielectric
constants decreases. However, the variation in attenuation by
changing b is rather obvious.

As frequency increases, the thickness-to-skin depth ratio
t/6 increases, making the number of bases in (4) increases.
Because the CPU time is directly proportional to the square
of the basis terms used, it will increase the computing time in
higher frequency. To reduce the CPU time, we alternatively
use the better field distributions to represent the unknown field
distribution [11].
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Fig. 7. Effective dielectric constant € ;¢ and attenuation constant & versus
t with frequency as parameters.

Fig. 4 shows some typical field distributions, at 10 and
60 GHz, along the air-substrate interface (y = 0) which are
calculated by (4). One can find that, though the frequency is
raised from 10 to 60 GHz, the field distributions are changed
not much. This observation suggests the use of the already
calculated better field distributions le, (z,y) at some specific

frequency f; by (4) to represent the unknown field distributions
at other frequencies [11]

L
Ep(z,y) =Y abé(z,y), p=my,z Q)

1==0

Hereafter, we call the method by (7) as method 2, and the
method by (4) as method 1.

Note that the ratio of E, : E, : E, in Fig. 4 is about
10%:1:1073. Definitely, F, is the dominant component of
electric field. However, if the E, and E, components were
omitted, the negative slope of €. ss-curve in lower frequency
would disappear and the computed attenuation constant in
higher frequency would be less accurate.

Fig. 5 compares €erf and o calculated from these two
methods. To give better results for every frequency from 10
to 60 GHz, we use 8 Legendre polynomials, and 6 piecewise
linear functions in (4) to generate the curves marked “method
1.” The curves marked “1 term” use the field distribution at 10
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Fig. 8. Effective dielectric constant ¢, £y and attenuation constant o versus

frequency with conductivities o1 (=o}) as parameters.

GHz by (4), the curves “2 terms” use those at 10 and 60 GHz,
and the curves “3 terms” use those at 10, 20, and 60 GHz
to represent the unknown field by (7). Note that the curves
by method 2 converges quickly to the ones by method 1, and
only two terms in (7) are required to get the desired €.y y-
and a-curves with error less than one percent. In this study,
the method 2 is adopted to compute Fig. 6, and Figs. 8-10,
using the field distributions at 10 and 60 GHz by method 1 to
expand the unknown field distributions as given by (7).

Fig. 6 shows the effect of increasing metallization thickness
t on the effective diclectric constant and attenuation constant.
As expected, both the effective dielectric constant and atten-
uation constant decrease as ¢ increases. It should be notes
that the slope of e.;; in low frequency range is negative.
When the thickness-to-skin depth ratio ¢/6 approaches infinity,
the current flows essentially along the conductor surface and
the dispersion curve grows as the frequency increases as
predicted by the conventional technique of assuming infinite
conductivity. However when ¢ and § are of the same order,
the current then penetrates into the conductor region, and this
will introduce an internal inductance which then increases the
effective dielectric constant in low frequency. The negative

slope in e.ps-curve is also observed theoretically [8] and
experimentally [13].
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60

Fig. 7 shows the effective dielectric constant and attenuation
constant vs. the thickness of signal strip and ground planes
with frequency as parameters. As thickness ¢ increases, the
curves of attenuation constant decrease steeply from ¢ ~
0tot ~ 36 27 um for 10 GHz and 1.1 pum for 60
GHz), then change slowly, and finally approach constants.
As t > 36, the current distributes almost around the con-
ductor . surface, making the loss nearly independent of the
conductor thickness. One implication is that the conductor
may be regarded essentially as a perfect conductor as ¢ >
36, thus the simplified method, such as the extended spectral
domain approach [6] or the transverse resonance technique

. [5] together with the perturbation approximation, may provide
an efficient one of handling both the phase and attenuation
constants.

The effect of increasing the conductivity o1(=o03)is repre-
sented in Fig. 8. Here, both the effective dielectric constant
and attenuation constant decrease as o increases.

The effect of lossy ground planes is shown in Fig. 9. Both
the attenuation and effective dielectric constants decrease as
o increases. The influence due to the finite conductivity oy of
ground planes is smaller than that due to the conductivity o}
of signal strip. However when compared with the microstrip
lines, the influence due to o} is quite large.

1

T T T =T T
105 | B N
0L p2sufiil]
SOOumf
95 F T"
eeff Sr €.=126
85 t+ _
=0, = 3.0x10 S/m
8 -
75 F
7
1 i 1 L [
I I i 1 1
3| e
tan & =0.1 \ L
25 r /,// ' .
o, /// 0 001 }_d
(dB/mm) 2 |- s 0.01 "} i IUPELY g
1.5
1

40 50 60

30
f (GHz)
Fig. 10. Effective dielectric constant .5 s and attenuation constant o versus
frequency with substrate loss tangent tan 6 as parameters.

Shown in Fig. 10 is the effect of increasing the loss tangent
tan 6. Here, the loss due to conductors are much larger than
that due to substrate. However, if tan 6 is as large as 0.1, the
substrate loss can be comparable with the conductor loss.

Fig. 11 shows the distribution of longitudinal current J,
on signal strip and ground planes. As expected, the edge
enhancement behavior is found for the longitudinal current,
but the edge current is finite instead of infinity. It is interesting
to point out that the maximum ground plane current is a little
smaller than the maximum signal strip current, but it decays
rapidly that when C'D’ or A’B’ is equal to b, the current is
about 0.2.J,(0). As A’B’ extends to 5b, the current is about
0.005.J(0). Hence to avoid the side wall effect, the dimension
of the package box should be larger than 5b.

IV. CONCLUSION

In this study, a modified spectral-domain approach has been
proposed to deal with the coplanar waveguide with layer
structure in which both the thickness and conductivity of signal
strip and ground planes are finite. The effective dielectric
constant €.y and attenuation constant « of this lossy coplanar
waveguide have been discussed in detail, together with the
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longitudinal current distributions along the signal strip and
ground planes.

The proposed approach can be applied to the structures
with superconducting metallization and/or semiconductor sub-
strates.

In this work, two methods (method 1 and method 2) are
proposed to represent the unknown field distributions. The
disadvantage of method 1 is that the number of bases used is
proportional to the thickness-to-skin depth ratio ¢/4. If the ratio

t/é is larger than 3, the computation cost will be expensive.

To avoid the increased CPU time as ¢/§ increases, the method
2 which is based on the better field distributions calculated by
method 1 should be employed.

APPENDIX

The spectral-domain dyadic Green functions é’zz, ém, éwz,
G’m, G’yz, and éyz for the layer structure Fig. 1(c) can be
developed by the method of [14], [15]. Then, the Green
functions ézy and ézy can be derived from éyz and C:‘ym
by reciprocity, and the one @yy can be found easily from Gzy
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and Gmy. Included here is a typical one such as

k22
zor 8
G F> (8)

= -3 2
we = ——5—5= | k30T
Coo = 30 B2 1 72) ( ola+

where

Oy = [e~jﬂa|y—y’| _ F;uleﬂ'ﬂb(y-ky')
R LGS
+ F1411F24216~jﬁb(2t—1y~y’|)]
JI1 = Tggy Dggye 775 9],

Tp =[e~ iyl 4 F%neijﬁb(ﬁyl)
4 Ty 3802630
+I‘},HI‘%Zle—jﬁb@t_ly—y/D]
/1 =Ty Dy e ™% (2t)]>

and ﬁf = kf — k2 — K2, kf = ypjwpg. All TV, and Tk 4,
(i = 1, 2) are defined by [15].
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